Image Deblurring and Super-Resolution by Learning from Blurry and Low-Resolution Images Only

Jérémy Scanvic^{1,2} (Speaker) Mike Davies² Patrice Abry¹ Julián Tachella¹

 $^{\rm 1}$ Laboratoire de Physique, ENS de Lyon

² School of Engineering, University of Edinburgh

July 9, 2024

THE UNIVERSITY of EDINBURGH School of Engineering

A bit of context

1st internship in Lyon

worked out¹ a new method for image super-resolution

2nd internship in Edinburgh

extended it to non-blind image deblurring

3rd internship back in Lyon

looking for a new method for blind image deblurring

¹thanks to my advisors' brilliant insights

Image deblurring

Goal

• Deblurring a dataset of blurry images $\{y_i\}_{i=1}^N$

Applications

- Astronomical imaging
- Microscopy
- Remote sensing
- Handheld camera photography

Imaging model

Or with symbols

$$y = k * x + \varepsilon \tag{1}$$

Constraints

- Known blur kernel (non-blind deblurring)
- Unknown blur kernel (blind deblurring)

Ill-posedness of deconvolution

(Noiseless)

(Slightly noisy)

$$\hat{X} = K^{-1} \odot Y$$

 $\hat{X} = K^{-1} \odot Y$

Different regularization approaches

The distributions must match

$$\hat{\mathcal{X}} = \mathcal{X}$$
 (2)

Consistency with blurry images is not enough!

Approaches

- Using a Bayesian prior on image distributions
- Using data for supervised learning
- Finding a way to do self-supervised learning
 - Equivariant imaging

Invariance to scale

Rescaled images of a rose remain images of a rose.
 Or leaving pretty flowers aside...

$$T_g x \in \mathcal{X}, \ \forall x \in \mathcal{X}.$$
 (3)

Spectral effect of spatial transforms

Scale-equivariant imaging

Every training epoch

> All the blurry images y are deblurred using the neural network f_{θ}

• Blurry images are synthesized from $x^{(2)}$...

$$y^{(2)} = k * x^{(2)} + \tilde{\varepsilon}$$
⁽⁵⁾

 \blacktriangleright ... and are then deblurred using f_{θ}

$$\hat{x}_{\theta}^{(2)} = f_{\theta}(x^{(2)}) \tag{6}$$

9 / 13

(4)

Results on Gaussian deblurring

Kernel: Gaussian (s.d. = 2px)

* PSNR

Results on Gaussian deblurring

	Kernel standard deviation (px)		
Deblurring method	1	2	3
Supervised learning (SOTA)	30.9	25.9	23.6
Self-supervised learning (ours)	30.3	25.9	23.7
No processing	26.4	22.8	21.2

Average PSNR between deblurred and reference images (dB)

What's coming next?

Blind Scale-Equivariant Imaging?

References

- Self-Supervised Learning for Image Super-Resolution and Deblurring, Scanvic, Davies, Abry and Tachella, arXiv, 2024
- Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements, Chen, Tachella, Davies, CVPR 2022
- Equivariant Imaging: Learning Beyond the Range Space, Chen, Tachella, Davies, ICCV, 2021

Credits

"Sunset Rose", Bill Stilwell @ Flickr (2005), CC BY-SA 2.0 (altered from original)

Results for bicubic super-resolution

Results for bicubic super-resolution

	Sampling rate		
Upsampling method	2	3	4
Supervised learning (SOTA)	29.2	24.3	22.7
Self-supervised learning (ours)	29.1	24.4	22.9
Bicubic upsampling	27.4	23.3	21.9

Average PSNR between upsampled and reference images (dB)

Scale-equivariant imaging

Equivariant Imaging

$$\mathcal{L}_{\mathsf{REQ}}(\theta) = \sum_{i=1}^{N} \|x_i^{(3)}(\theta) - x_i^{(2)}(\theta)\|^2$$
(4)

 Robust Equivariant Imaging, Chen, Tachella, Davies, CVPR 2022