Scale-Equivariant Imaging: Self-Supervised Learning for Image Super-Resolution and Deblurring

Jérémy Scanvic ^{1,2} Mike Davies ² Patrice Abry ¹ Julián Tachella ¹

¹Laboratoire de Physique, ENS de Lyon, ²School of Engineering, University of Edinburgh

> May 13, 2025 GdR IASIS, INRIA Paris

THE UNIVERSITY of EDINBURGH School of Engineering

The problem of image deblurring

Sharp images

Blur filter

$$Ax = h * x \tag{1}$$

Blurry images

Additive Gaussian noise

$$\varepsilon \sim \mathcal{N}(0, \ \sigma^2 I)$$
 (2)

Super-resolution as a deblurring problem

Low-pass filtering

Ill-posedness of the problem

By the convolution theorem

$$\hat{y}(\xi) = \hat{h}(\xi)\hat{x}(\xi) + \hat{\varepsilon}(\xi)$$
(3)

Inverse filtering

$$rac{\hat{arphi}(\xi)}{\hat{ar{h}}(\xi)}=\hat{x}(\xi)+rac{\hat{arepsilon}(\xi)}{\hat{ar{h}}(\xi)}$$

Inverse filter

Blurry image with noise

Extremely noisy reconstruction

(4)

Standard approaches

The model-based approach

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} \|Ax - y\|_2^2 + R(x)$$
(5)

- + No ground truth image required
- Handcrafted for an image distribution

The supervised approach

$$\min_{\theta \in \mathbb{R}} \quad \mathop{\mathbb{E}}_{x,y} \| f_{\theta}(y) - x \|_2^2 \tag{6}$$

- Ground truth images required
- + Data-driven instead of handcrafted

Invariance and image transformations

Insight. Natural image distributions are generally invariant to many transformations.

Definition. A set of images \mathcal{X} is said to be **invariant** to a group of transformations if

$$x \in \mathcal{X} \implies T_g(x) \in \mathcal{X}$$
 (7)

no matter the image x and the transformation T_g , e.g., a 90° rotation.

Equivariant imaging [Chen et al., 2021, 2022]

Insight. Image distribution invariances help regularize ill-posed inverse problems.

$$\min_{\theta} \quad \underbrace{\mathbb{E}}_{x,y} \|Af_{\theta}(y) - Ax\|_{2}^{2} + \underbrace{\mathbb{E}}_{x,\varepsilon,g} \|f_{\theta}(AT_{g}x + \varepsilon) - T_{g}f_{\theta}(Ax + \varepsilon)\|_{2}^{2} \qquad (8)$$

Why scaling transforms for deblurring?

Theorem (Informal). [Scanvic et al., 2025] A set of (sharp) images $\mathcal{Z} \subseteq \mathcal{S}$ is uniquely determined¹ by the blurry images

$$\mathcal{Y} = \{ h * z, z \in \mathcal{Z} \}, \tag{9}$$

obtained through a bandlimiting filter $h \in S$,

► as long as Z is scale-invariant;

but not if it is invariant to roto-translations.

Transformations	PSNR				
Scaling transformations	26.4				
Translations & rotations	24.7				

¹up to an arbitrarily high frequency

Gradient stopping

	Gaussi	an filter	(medium)	Box f	ilter (m	edium)	Downsampling $(\times 2)$					
GS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS			
\checkmark	25.9	0.795	0.254	27.0	0.818	0.178	28.1	0.850	0.197			
×	22.9	0.632	0.506	22.6	0.601	0.551	26.8	0.810	0.305			

Impact of gradient stopping (GS) on test metrics

Gap with supervised training

	Gaussian filter (small)			Gaussian filter (medium)		Gaussian filter (large)		Box filter (small)			Box filter (medium)			Box filter (large)				
Method	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS
Supervised SEI (Ours)	30.7 30.3	0.923 0.917	0.064 0.062	25.9 25.9	0.803 0.795	0.249 0.254	23.7 23.7	0.694 0.687	0.361 0.379	29.1 28.8	0.879 0.874	0.107 0.112	27.3 27.0	0.825 0.818	0.171 0.178	25.4 25.0	0.755 0.739	0.255 0.309
Blurry images	26.4	0.794	0.269	22.8	0.597	0.461	21.2	0.494	0.604	23.4	0.629	0.359	21.9	0.528	0.464	21.0	0.465	0.552

Preprint available on

Code available on

Powered by

References

- Dongdong Chen, Julián Tachella, and Mike E. Davies. Equivariant Imaging: Learning Beyond the Range Space, August 2021.
- Dongdong Chen, Julian Tachella, and Mike E. Davies. Robust Equivariant Imaging: A fully unsupervised framework for learning to image from noisy and partial measurements. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5637–5646, New Orleans, LA, USA, June 2022. IEEE. ISBN 978-1-6654-6946-3. doi: 10.1109/CVPR52688.2022.00556.
- Jérémy Scanvic, Mike Davies, Patrice Abry, and Julián Tachella. Scale-Equivariant Imaging: Self-Supervised Learning for Image Super-Resolution and Deblurring, March 2025.